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Analytical expressions are derived for the velocity vector, the stress components
and the viscosity function in fully developed channel and pipe flow of Phan-Thien–
Tanner (PTT) fluids; both the linearized and the exponential forms of the PTT
equation are considered. The solution shows that the wall shear stress of a PTT
fluid is substantially smaller than the corresponding value for a Newtonian or upper-
convected Maxwell fluid, with implications for comparing predicted and measured
values in a non-dimensional form.

1. Introduction
The constitutive equation for Phan-Thien–Tanner (PTT) fluid (Phan-Thien & Tan-

ner 1977; Phan-Thien 1998) can be written in a general form as

f(tr(τ ))τ + λ
O
τ = 2ηD , (1)

where τ and D are the extra-stress and deformation-rate tensors, λ is the relaxation
time, η is a constant viscosity coefficient and O

τ denotes Oldroyd’s upper-convected

derivative,
O
τ = Du/Dt− τ · ∇u− ∇ut · τ .

Two forms of the PTT model are in common use, namely the linearized form given
in the original paper (Phan-Thien & Tanner 1997), where the function f is

f(tr(τ )) = 1 +
ελ

η
tr(τ ) (2)

and the exponential form (Phan-Thien 1978) with

f(tr(τ )) = exp

(
ελ

η
tr(τ )

)
. (3)

In both forms ε is a parameter related to the elongational behaviour of the model.
Note that the linearized form results from (3) if the trace of the stress tensor is small
and that both forms reduce to the well-known upper-convected Maxwell (UCM)
model when ε vanishes.
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The PTT model has found widespread use in the simulation of the flow of polymer
solutions and melts. Indeed, it has been found (Quinzani, Armstrong & Brown 1995)
to be the best simple differential model to represent the elongational properties of
polymer solutions in entry flows. For example, both Baaijens (1993) and Azaiez
Guénette & Aı̈t-Kadi (1996) have used the linearized form to predict the entry flow
through the 4 : 1 planar contraction measured by Quinzani et al. (1995); Baloch,
Townsend & Webster (1996) have also used it to simulate both expansion and
contraction flows. The exponential form of the PTT model gives a maximum of the
elongational viscosity at a given level of strain rate in simple stretching flows, as is
typical of some polymer melts; it was used, for example, by White & Baird (1988a, b)
to simulate their own measurements.

In this work the analytical solution for the fully developed pipe and channel flows of
PTT fluids is derived. Analytical solutions offer a more convenient means of checking
the ability of a particular constitutive model to represent some specific fluid behaviour,
and are also useful to prescribe inlet or outlet boundary conditions in numerical
flow simulations and to validate numerical predictions. Previous work on analytical
solutions of the PTT equations (Carew, Townsend & Webster 1993 and Azaiez et
al. 1996) appears to be restricted to simple shear flow (γ̇ ≡ du/dy = constant)
which allows the determination of the steady shear material functions of the model,
namely the viscosity function, µ(γ̇), and the primary normal stress coefficient, Ψ1(γ̇).
In Poiseuille-like flow, either planar or axisymmetric, du/dy is not constant and,
unlike the upper-convected Maxwell model where the equations for the longitudinal
momentum and for the stresses are decoupled, the same does not hold for the PTT
model.

2. Analytical solution
The analysis is valid for two-dimensional channel and axisymmetric pipe flows,

but for simplicity is presented for the planar case with the appropriate modifications
required for the pipe flow introduced via appropriate parameters. The streamwise
velocity component is u and the cross-stream (radial) velocity component is v, and
the flow is defined in the (x, y)-plane with y representing either a transversal or a
radial coordinate. The centreline/axis, where symmetry conditions are imposed, is
located at y = 0, and y = H is the wall, H being half the channel width or the pipe
radius. Where appropriate, differences with the corresponding axisymmetric case will
be indicated. In what follows, an index with comma denotes a partial derivative and a
superscript j identifies the flow case with j = 0 and j = 1 for channel and pipe flows,
respectively. In fully developed flow, the velocities and stresses depend only on the
lateral coordinate y, and the continuity equation together with the no-slip condition at
the wall immediately imply v = 0. In this case, the constitutive equation (1) reduces to

f(τkk)τxx = 2λu,y τxy, (4)

f(τkk)τyy = 0, (5)

f(τkk)τxy = ηu,y + λτyyu,y, (6)

where τkk ≡ τxx + τyy is the trace of the stress tensor. Equation (5) implies τyy = 0,
since f(τkk) = 0 would lead to unrealistic results (either to a violation of the no-slip
condition or to absence of flow with an imposed pressure gradient), and thus the
trace of the stress tensor becomes τkk = τxx. In this situation it is easy to verify from
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the equations of motion that the pressure gradient p,x is constant and integration of
the longitudinal momentum equation, subjected to the boundary condition τxy = 0 at
the symmetry line y = 0, yields

τxy = p,x
y

2j
. (7)

With the above simplifications and upon division of the expressions for the two non-
vanishing stresses (equations (4) and (6)) the specific function f cancels out resulting in

τxx =
2λ

η
p2
,x

y2

22j
. (8)

Note that equation (8) is consistent with the required boundary condition at the
centerline, i.e. τxx = 0 at y = 0. After combining (6), (7) and (8) we come to the
important conclusion that the velocity gradient is given by

γ̇ ≡ du

dy
= f

(
2λ

η
p2
,x

y2

22j

)
p,x y

η 2j
, (9)

an explicit differential equation in y which can be directly integrated to give the
velocity profile once the function f is specified.

2.1. Linear PTT model

With f given by equation (2), equation (9) can be integrated subject to the no-slip
boundary condition at the wall (y = H) and the resulting velocity profile is the
following cubic equation in the pressure gradient:

u(y) =
−p,x
2j+1η

(H2 − y2)

(
1 +

ελ2p2
,x

22jη2
(H2 + y2)

)
. (10a)

It is often more convenient to work with the non-dimensional form of this equation,
obtained after scaling distances with H , velocities with the cross-sectional average
velocity ū and stresses or pressure with ηū/H . In this way, it will be easier to derive
the relevant equations for the inverse problem of determining the pressure gradient
when the flow rate is known, the common situation in an experiment. After some
manipulation, the non-dimensional velocity profile can be written as

u(y)

ū
= κ

ūN

ū

(
1−

(
y

H

)2)(
1 + 4κ2εDe2

(
ūN

ū

)2(
1 +

(
y

H

)2))
(10b)

where κ takes the values 1.5 and 2 for plane or axisymmetric flows, respectively. In
equation (10b) the parameter ūN is defined as

ūN ≡ −p,xH
2

2j+1kη
(11)

and represents the cross-sectional average velocity for the Newtonian or the upper-
convected Maxwell fluid cases. Note also that ūN/ū is nothing other than a non-
dimensional pressure gradient. The dimensionless group De = λū/H is the Deborah
number, a measure of the level of elasticity in the fluid, and is based on the average
velocity ū. For De = 0 or ε = 0, the above equations reduce to the well known
parabolic profile with a maximum velocity at the centreline given by (u0)N = κūN .
Thus the second term in the brackets of equation (10) represents a corrective (or
additional) term, relatively to the parabolic profile, and is connected to the PTT
model.
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The pressure gradient −p,x is usually unknown but can be related to the cross-
sectional average velocity through the definition of the flow rate following Bird,
Armstrong & Hassager (1987)

ū ≡ 1

Hj+1

∫ H

0

2jyju(y)dy

and the integration yields the solution of the direct problem, the flux for a given
pressure gradient

ū =
−p,xH2

η(j + 1)(j + 3)

(
1 +

ελ2p2
,xH

2(j + 3)

2(2j−1)η2(j + 5)

)
. (12)

For the solution of the inverse problem, the determination of the pressure gradient
for a given flux, it is advantageous to work with the normalized velocity profile (10b)
which needs to be integrated to yield the following non-dimensional cubic equation
for ūN/ū:

1 =
ūN

ū

(
1 + b

(
ūN

ū

)2)
(13)

with

b ≡ 8(3 + j)κ2

(5 + j)
εDe2.

This equation shows that ūN < ū, i.e. for an identical longitudinal pressure gradient a
higher flow rate results for the PTT fluid than for the Newtonian fluid on account of
the shear-thinning behaviour. From the Cardan–Tartaglia formula for the solution of
algebraic cubic equations it can be readily shown that the real solution of (13) is

ūN

ū
=

(432)1/6(δ2/3 − 22/3)

6b1/2δ1/3
(14)

with the following definitions used to simplify the notation:

α = 33b+ 4; β = 33/2b1/2; δ = α1/2 + β.

Equation (14) gives the explicit relation for the pressure gradient as a function of the
cross-sectional average velocity ū, once ūN is substituted by its definition (equation
(11)). The main results of the analysis for the linearized PTT fluid are therefore the
velocity profile (10), the flux equation (12) and the unknown driving pressure gradient
at given flow rate obtained from (14). The maximum velocity at the centreline (y = 0)
is also useful and is given by

u0

ū
= κ

1 + 4κ2εDe2(ūN/ū)
2

1 + b(ūN/ū)2

showing that it is smaller than in the Newtonian case. Expressions for the normalized
stress components are readily obtained after scaling with the wall shear stress for
the Newtonian (or UCM) fluid. From equation (8), the non-dimensional normal
stress is

τxx

2κη ū/H
= 4κDe

(
ūN

ū

)2(
y

H

)2

(15)
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and the normalized shear stress component is calculated from (7):

τxy

2κη ū/H
= −

(
ūN

ū

)(
y

H

)
. (16)

The shear strain rate, from (9), becomes

γ̇(y)

2κ ū/H
= − ūN

ū

(
y

H

)(
1 + 8κ2εDe2

(
ūN

ū

)2(
y

H

)2)
(17)

and the viscosity profile is

µ(γ̇) ≡ τxy

γ̇
⇒ µ(γ̇)

η
=

(
1 + 8κ2εDe2

(
ūN

ū

)2(
y

H

)2)−1

. (18)

Wall values for these quantities are useful to define non-dimensional quantities and
are obtained after setting y = H:

µw

η
=

(
1 + 8κ2εDe2

(
ūN

ū

)2)−1

,
(τxy)w

2κη ū/H
=
ūN

ū
and

(τxx)w
2κη ū/H

= 4κDe

(
ūN

ū

)2

,

(19)
where (τxy)w is defined positive. These values are smaller than the corresponding values
for the UCM fluid, a point to be taken into account when comparing non-dimensional
values.

2.2. Exponential PTT model

The normal and shear stress profiles are independent of the function f(trτ), therefore
they are still given by equations (15) and (16), respectively. However, the ratio ūN/ū
in those expressions is different since it depends on the new velocity distribution. This
distribution is obtained in a similar way by inserting the new f function (equation
(3)) into equation (9) followed by integration, to yield the dimensional and the
corresponding non-dimensional forms of the velocity profile, respectively:

u(y) =
exp(ελ2H2p2

,x/(2
(2j−1)η2))

−p,xελ2/(2j−2η)

(
1− exp

(
− ελ2p2

,x

η222j−1
(H2 − y2)

))
(20a)

and

u(y)

ū
= κ

ūN

ū

exp (b(ūN/ū)
2)

b(ūN/ū)2
(1− exp(−b(ūN/ū)2(1− (y/H)2))), (20b)

where now b ≡ 8κ2εDe2. This is also valid for the axisymmetric case, after effecting
the appropriate changes. Appropriately, in the limit of small b(ūN/ū)

2, equation (20b)
tends to the parabolic profile, as it should.

The equation relating the flow rate and the pressure gradient, required for the
solution of the direct problem, is no longer common to both geometries. For the
channel, we obtain

ū =
−η

4ελ2p,x

(
exp

(
2ελ2p2

,xH
2

η2

)
− η

2λp,xH

π1/2 erf (i(λp,xH/η)
√

2ε)

i
√

2ε

)
(21a)

and for the pipe

ū =
−η

2ελ2p,x
exp

(
ελ2p2

,xH
2

2η2

)(
1 +

exp(−ελ2p2
,xH

2/(2η2))−1

ελ2p2
,xH

2/(2η2)

)
. (21b)
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Figure 1. Variation of the average velocity ratio ūN/ū with ε1/2De (solid line: plane flow; dashed
line: axisymmetric flow; no symbols: linear PTT; symbols: exponential PTT).

ε1/2De Channel Pipe ε1/2De Channel Pipe

0.05 0.9746 0.9526 1.0 0.3134 0.2471
0.1 0.9132 0.8545 2.0 0.1858 0.1439
0.2 0.7695 0.6732 3.0 0.1342 0.1033
0.3 0.6515 0.5492 4.0 0.1059 0.08114
0.4 0.5628 0.4642 5.0 0.08778 0.06713
0.5 0.4953 0.4028 6.0 0.07519 0.05740
0.6 0.4427 0.3565 7.0 0.06589 0.05024
0.7 0.4007 0.3203 8.0 0.05873 0.04474
0.8 0.3663 0.2911 9.0 0.05303 0.04036
0.9 0.3376 0.2672 10.0 0.04839 0.03680

Table 1. Numerical solution of equations (24) and (25). Values of ūN/ū.

The normalized shear-rate and viscosity profiles are readily obtained from (20b) and
(16):

γ̇(y)

2κ ū/H
= − ūN

ū

(
y

H

)
exp

(
8κ2εDe2

(
ūN

ū

)2(
y

H

)2)
(22)

and

µ(γ̇)

η
= exp

(
− 8κ2εDe2

(
ūN

ū

)2(
y

H

)2)
. (23)

Again, for the inverse problem of determining the pressure gradient for a given flux,
the non-dimensional velocity profile is integrated across the channel or pipe sections
to give the parameter ūN/ū. Here, also, different equations are obtained for the planar,

1 =
3

2

ūN

ū

exp (b(ūN/ū)
2)

b(ūN/ū)2

(
1 +

iπ1/2 exp (−b(ūN/ū)2) erf (ib1/2ūN/ū)

2b1/2ūN/ū

)
(24)
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Figure 2. Velocity profile of the linear PTT fluid in channel flow as a function of the dimen-
sionless group ε1/2De (solid line: parabolic profile; dashed lines: ε1/2De = 0.1, 0.5, 1.0 and 5.0).
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Figure 3. Comparison of the velocity profiles for the linear and exponential PTT model in channel
and pipe flow (De = 2 and ε = 0.1) (solid lines: parabolic profile; dashed lines: linear and
exponential PTT).

and the axisymmetric cases

1 = 2
ūN

ū

exp (b(ūN/ū)
2)

b(ūN/ū)2

(
1− 1− exp (−b(ūN/ū)2)

b(ūN/ū)2

)
. (25)

This time, these nonlinear equations are not amenable to an analytical solution and
therefore numerical methods are required. We have solved the above equations with
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Figure 4. Profiles of the normalized shear and normal stress components: (a) for varying ε, at
constant De = 2 (solid lines: UCM fluid; dashed lines: ε = 0.01, 0.1, 0.25 and 1.0); (b) for varying
De, at constant ε = 0.25 (solid lines: Newtonian fluid; dashed lines: De = 0.1, 1, 2, 5 and 10).

a straightforward but robust bisection method and the solution is shown in figure 1;
for the sake of completeness, a few such values are also given in table 1 from where
other values can be extracted by interpolation.

3. Discussion
It is clear from figure 1 that, for identical pressure gradients, the PTT fluid can

carry a larger flow rate than the Newtonian or UCM fluids, especially for ε1/2 De
larger than 2. This effect is due to an increased shear-thinning behaviour with the
parameter ε1/2 De and is more intense with the exponential form of the PTT model.
The shear-thinning behaviour is also observed in the flatter velocity profiles pertaining
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to the plane flow of the linear PTT fluid in figure 2. As ε1/2 De increases the velocity
profiles flatten in the centre in a similar way to those of shear-thinning power-law
fluids (Skelland 1967). The exponential form of the PTT model leads to velocity
distributions (equations (20), (24) and (25)) that are similar to those in figure 2 except
for the increased shear-thinning behaviour as a consequence of the corresponding
higher values of the function f, as seen in figure 3. Shear thinning reduces the wall
shear stress since the increased shear rate at the wall (cf. du/dy at y = H in figure 2)
is outweighted by the reduction in the viscosity; for example, for De = 2 and ε = 0.1,
γ̇w increases by 34% relative to the Newtonian case, but µw is reduced by 63.4% and
the net effect is a reduction of 51% of the wall shear stress.

The distributions of the normalized τxy and τxx across the channel width are
shown together for the linear PTT model in figure 4(a), for varying ε at constant
De, and in figure 4(b) for varying De at constant ε. The trends in figure 4(a) are
expected since ε → 0 brings the PTT model close to the UCM model and so the
stresses should increase in magnitude. In the latter graph, however, the trend is not
monotonic and for high elasticity (high De) the normal stresses are seen to decrease,
an unexpected outcome. Inspection of the relevant equations shows that both stress
components depend only on the dimensionless group ε1/2 De, but the normal stress
also depends separately on De alone. For high De, equation (15) shows τxx ∝ De−1/3

hence justifying the decrease of τxx with elasticity seen in figure 4(b). This peculiar
effect can be removed if the stresses are made non-dimensional with their own value
of shear stress at the wall. Then, the variation of τxy/(τxy)w will coincide with that for
the UCM or the Newtonian models, and the normal stress will be given by

τxx

(τxy)w
= 4κDe(ūN/ū)(y/H)2,

which, for high De, tends to ≈ (De/ε)1/3 at the wall, because ūN/ū ≈ 1/b1/3 ≈
1/(εDe2)1/3 (see equation (13)). Hence, the above non-dimensional normal stress now
increases monotonically with De.
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